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Abstract. It is demonstrated using numerical experiments that the damped Ac-driven Toda 
lattice can support stable propagation of solitons, if the drive strength is above a certain 
threshold value, and the drive frequency and phase are properly chosen. This phenomenon 
is thoroughly studied by varying the dissipation factor and the drive parameters. In 
particular the threshold values of the drive parameter corresponding to different soliton 
velocities are found. 

Nonlinear models of contemporary condensed matter physics demonstrate a rich variety 
of dynamic behaviour. In many cases, these models support stable propagation of 
solitons, which are localized collective excitations in the corresponding physical sys- 
tems. The solitons are well known to demonstrate remarkable dynamic properties: 
stable propagation, elastic collisions, etc. However, this nice picture of soliton dynamics 
is inevitably altered by dissipation, which gives rise to a gradual attenuation of the 
solitary pulses. To compensate the dissipative losses and thus to stabilize the propaga- 
tion of the solitons, one should apply some external drive to the system. A well known 
example of this is a long Josephson junction, where weak dissipative losses, caused 
by tunnelling of normal electrons across the dielectric bamer, can be compensated by 
a uniformly distributed DC bias current. This mechanism provides for the stable 
propagation of the solitons in the form of magnetic Eux quanta (Euxons), the Euxons 
move in the junction at an equilibrium velocity determined by the balance between 
the dissipation and the Dc-drive El]. This Dc-driven motion of solitons is a generic 
effect and using it one can analyse, e.g., the propagation of phase solitons in a damped 
charge-density-wave system driven by a DC electric field, the motion of domain walls 
in a damped ferromagnet driven by a DC magnetic field and so on (see the review 

While the models of such systems as Josephson junctions and charge density waves 
are continuum, a more precise description of solitary wave propagation in molecular 
chains and in strings of absorbed atoms should be discrete. Discrete lattice models 
can also support solitonic excitations, but then the dynamics of solitons drastically 
differ from that in the continuum models. For example, the presence of an exact 
onesoliton solution to a continuum model is a rather generic property and it does not 
imply their exact integrability, while, in the discrete case only, exactly integrable models 
admit undistorted propagation of a soliton. In the general (non-integrable) case, a 

papem [2,3l). 
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solitary excitation must spread out due to radiative losses (although simulations 
demonstrate that sometimes these losses may be extremely small, rendering the propaga- 
tion of a soliton in a non-integrable lattice almost stable [ 2 , 3 ] ) .  However, in real 
discrete systems, such as atomic chains, etc, a much more important factor is the 
dissipative damping. So, to support propagation of solitons in these chains, one needs 
to design a drive that can compensate the radiative and dissipative losses. 

Recently it has been suggested [4] that there is a new mechanism to sustain soliton 
propagation in discrete dissipative systems, which has no analogue in the continuum 
models: AC (time-periodic) drive can compensate dissipative and/or radiative losses 
in a chain. The physical idea underlying this mechanism is that, if the chain's spacing 
is d, and the Ac-drive's frequency is w, they give rise to the velocities 

vN = wd/2?rN N = * l ,  *2,*3,. . . (1) 

at which a resonance between the periodic process of passage of the soliton through 
sites of the lattice (chain ) and the periodic Ac-drive takes place. In [4] it has been 
shown that the regimes of propagation of the soliton with resonance velocities given 
by (1) are stable under certain conditions. The necessary condition for these regimes 
to occur is that the drive's amplitude e should exceed a certain threshold value e,,, 
proportional to the dissipative constant a[4]. The value e,, is the minimum one at 
which the Ac-drive can compensate the dissipation; at e>  e,h, the exact compensation 
is provided by an expedient phaseshift between the soliton's law of motion and the 
AC-drive. 

The aim of the present work is to demonstrate by direct numerical simulations the 
possibility of the Ac-drive propagation of a soliton in a damped chain. As the paradigm 
of saliton-supporting chains, we will take the Toda lattice (TL), which is well known 
to be exactly integrable in the absence of dissipation and drive [5]. Dynamics of 
solitons in the damped TL (without drive) have been studied numerically in several 
works [6-91. 

Following [4] we will take the Ac-driven damped n in the following form?: 

8: In(l+ V.)+ aJ, In(l+ V,) = V,,+,+ Vm-, -2V. f 2 (  -1)"e cos(wt) (2) 

where, as deEned above, a, e and w are the dissipative constant, the drive amplitude, 
and frequency. The spin-changing factor (-1)" is necessary to provide for real input 
of energy from the Ac-drive (as proposed in [4] one may regard this model as a lattice 
of particles with alternating charges placed in an external field). In this case the driving 
frequency must be 141 

w = ( 2 N +  l)?rv N =o, 1,2,. . . ( 3 )  

and the corresponding threshold value for the drive parameter can be estimated as 

eth.=4aw In(u) (4) 

for sufficiently large v [4]. 
We have numerically integrated equation ( 2 )  using the Bulirsch-Stoer algorithm 

as an integration method with periodic boundary conditions [lo]. The total number 
of lattice points was 400. As an initial state we have used the ideal one-soliton solution 
V.(O) = sinh2(n) sech2(n(n - no)) with the initial position no= 10. 

t Equation(2)isequivalenttoequation(l)from[4](fortherLmodel)ifonesubstitutesln(l+ V,,) =yn-, -yn.  
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In order to examine the evolution of the soliton under extemal drive we have solved 
numerically the eigenvalue problem of the Toda lattice [5] at the moments of time 
t = 0, 10, . . . , 150. With this method it is possible to get quite accurate information 
about the temporary soliton content of the lattice. (By looking at the form of the soliton 
solution we cannot say much about its amplitude, especially when it is narrow, because 
its maximum will not be exactly at the lattice point. The eigenvalue method is much 
more accurate than fitting the soliton solution to the values of the lattice points in 
order to find the real amplitude.) 

The amplitude A = sinh’(0) of the soliton corresponding to the dominant eigenvalue 
(other eigenvalues represent the tail and other small perturbations) is shown in figure 
1 as a function of time for different values of the drive parameter e. The initial amplitude 
was 24.37 (Cl = 2.30), the velocity U = 2.14, the dissipation factor a = 0.002 and the h s t  
resonance frequency ( N  = 0) w = TU = 6.774 34. There is clear threshold value at 
e = 0.0490-1.0.0005: with smaller values the amplitude decays exponentially but with 
higher values the mean amplitude is constant. With other initial amplitudes (velocities) 
there is a similar threshold value for e. 

of the drive parameter e. The initial 
amditude was 24.37 (0  =2.3) and the 16.0 

0 25 50 75 1W 125 I50 
Time dissipation factor a =0.002. 

Figures 2(a) and 2(b)  show explicitly the time evolution of a solution by giving 
snapshots of the lattice at various times for two different drives. The total number of 
lattice points was 1000 and A = 24.37,O = 2.30, a = 0.01. In figure 2( a )  the drive e = 0.23 
is below the threshold value and the amplitude of the soliton decreases, but with 
e = 0.24 in figure 2( b )  the drive is above the threshold value and the mean amplitude 
of the soliton does not decrease. Since the soliton is very narrow (it is localized within 
a couple of lattice points) its maximum does not often fall on the lattice point at the 
chosen times and therefore its apparent amplitude tluctuates strongly. 

The effect of further increasing the drive e is presented in figure 3 where in all 
cases e is well above the threshold value. With increasing drive the period of oscillation 
in the amplitude of the soliton get smaller. It is natural to expect that the period 
approaches infinity as the drive parameter approaches the threshold value. It should 
be noted that only the frequency of the oscillation changes with e, while the average 
amplitude and the amplitude of the oscillation stay the same. 

The phase between the soliton and the extemal drive is important for the resonance 
condition. In figure 4 the amplitude is shown as a function of time for constant e = 0.1 
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1 L a t h  point n 1000 Lanim poim n 1 

Figure 2. The soliton solution as a function of the lattice points at different moments of 
time r = 0, IO, 20,. , . ,400. The initial amplitude was 24.37 and the dissipation factor 
a =0.01. ( a )  Thedrive parameter e=O.U (below the threshold value). ( b )  e=0.24 (above 
the threshold value). 
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Figure 3. The amplitude of the soliton as a 
function of time with different values of the 

( A  = 24.37. LI =O.OOZ). 
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Figure 4. The amplitude of the soliton as 
a function of time with different initial 

I 

l ime positions no ( A  = 24.37, (I = 0.002, e = 0.1). 
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(A=24.27) but different initial position of the soliton. Obviously the case no= 10.0 
gives best results, i.e. the smallest variation in the amplitude. This means that the initial 
soliton should be positioned exactly on an even lattice point to create the best resonance 
drive. If no is too far from the optimum value the resonance effect will never take place. 

In figure 5 we have collected the threshold data for three different dissipation 
factors a = 0.0005, a = 0.002 and a = 0.01, each one with five diiTerent velocities corres- 
ponding o = 1 .O, w = 1.5, o = 2.0, o = 2.3 and o = 2.5. The drive parameter is normalized 
with the dissipation factor in order to compare directly the theoretical prediction (4) 
with numerical results. With large amplitudes all curves converge and approach the 
theoretical curve. The result (4) is derived by assuming no radiative losses. Therefore 
the theoretical prediction for the threshold value is always smaller than the actual one 
needed for stable propagation of the soliton. 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 

Velocity 

Flgure 5. The threshold values of the drive 
parameter as a function of the velocity with 
different values of the dissipation factor. 
Threshold values are normalized with the dissi- 
pation factor. The solid lines represent numeri. 
MI results and the dashed line the theoretical 
prediction (=4m In(u)). 

In the limit of the minimum velocity ( = I )  the threshold value tends to increase 
rapidly. This is because of the width of the soliton: when the soliton extends over 
several lattice points and the drive partially cancels itself. We also observe that with 
small dissipation a relatively stronger drive is needed. Indeed, as long as perturbation 
theory is applicable the rate of energy losses contains two parts [2], the dissipative 
part proportional to a and the radiative part independent of a:  

and therefore the normalized drive parameter &,r = eo/a + e, approaches infinity when 
a goes to zero, as figure 5 suggests. 

The numerical results presented here show clearly that soliton dissipation can be 
compensated in a discrete lattice with an Ac-drive which has altemating sign in adjacent 
lattice points. One can expect that this numerically observed effect can be seen in real 
solitons propagating in an Ac-driven quasi-one-dimensional ionic lattice or in an ion 
doped polymer chain. Thus the effect described here should again provide further 
applications of the soliton concept in real systems. 

eth, = eo+ ae, (5) 
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